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Abstract

A new framework is introduced for kinetic simulation of laser-plasma in-
teractions in an inhomogenous plasma motivated by the goal of performing
integrated kinetic simulations of fast-ignition laser fusion. The algorithm ad-
dresses the propagation and absorption of an intense electromagnetic wave in
an ionized plasma leading to the generation and transport of an energetic elec-
tron component. The energetic electrons propagate farther into the plasma
to much higher densities where Coulomb collisions become important. The
high-density plasma supports an energetic electron current, return currents,
self-consistent electric fields associated with maintaining quasi-neutrality,
and self-consistent magnetic fields due to the currents. Collisions of the elec-
trons and ions are calculated accurately to track the energetic electrons and
model their interactions with the background plasma. Up to a density well
above critical density, where the laser electromagnetic field is evanescent,
Maxwell’s equations are solved with a conventional particle-based, finite-
difference scheme. In the higher-density plasma, Maxwell’s equations are
solved using an Ohm’s law neglecting the inertia of the background electrons
with the option of omitting the displacement current in Ampere’s law. Parti-
cle equations of motion with binary collisions are solved for all electrons and
ions throughout the system using weighted particles to resolve the density
gradient efficiently. The algorithm is analyzed and demonstrated in simula-
tion examples. The simulation scheme introduced here achieves significantly
improved efficiencies.
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1. Introduction

The interaction of intense laser light with plasma leads to diverse phe-
nomena of interest for applications such as laser fusion. The numerical simu-
lation of laser-plasma interactions in multiple dimensions with the inclusion
of kinetic effects is challenged by the large range of spatial and temporal
scales [1, 2, 3] . The time step in particle-in-cell (PIC) simulation of plasmas
using standard techniques must resolve the plasma oscillation everywhere,
wypeAt < O(1) for stability; the time step must resolve the laser frequency,
woAt < O(1) for accuracy; the spatial mesh must resolve the electron Debye
length, Az/\. < O(1) depending on the order of the spatial interpolation, [1]
and the collisionless skin depth, Azw,./c < O(1), everywhere to control self-
heating and ensure accuracy; and the Courant conditions on the speed of
light and the particles must be resolved, cAt/Ax < 1 [1].

In fast-ignition laser fusion [4] optical-wavelength laser light is incident
on a plasma spanning a range of densities from vacuum to densities exceed-
ing solid densities. If we consider plasma densities that are 103 — 10? times
the critical density n. where the laser frequency wy equals the local electron
plasma frequency wy. and n, = 1.1 x 10**cm™2 for a 1 um laser wavelength,
then the constraints on using standard particle simulation techniques solving
Maxwell’s equations and particle equations of motion using explicit time-
integration methods are formidable. In consequence, many studies separate
the simulation of fast ignition into fully electromagnetic studies of the laser-
plasma interaction going from vacuum to densities somewhat higher than
the critical density [5, 6, 7, 8] and then address the simulation of the trans-
port of the fast electrons generated by the laser absorption occurring near
the critical density to very high densities in a separate simulation using a
reduction of Maxwell’s equations [9, 10, 11, 12]. Here we introduce an al-
gorithm that combines a conventional fully electromagnetic PIC simulation
where the plasma is completely described in terms of particles and where
the fields are solved with a reduced model in the high-density plasma. The
composite algorithm marries the simulation of the laser-plasma interaction
with the simulation of the electron transport, and thus seeks to be a more
integrated simulation of fast ignition: the electron transport calculation is
driven by the self-consistent absorption of the laser and the concomitant self-
consistent generation of the fast electrons; the background plasma responds
kinetically; and heat is transported self-consistently [9, 10, 11, 12].

Other approaches to the simulation of fast ignition in a plasma density



gradient have been exercised with varying degrees of success. In the work of
Sentoku and Kemp [13], the plasma density is clamped in such a way as to
limit the plasma frequency for purposes of accumulating charge densities and
current densities to be used in solving Maxwell’s equations, i. e. , an artificial
upper bound is imposed on the plasma and current densities. However, the
local electron and ion densities are allowed to climb to much higher values
for purposes of computing collisions. The cutoff on the plasma density limits
how large wy.At and how small the skin depth ¢/w,. become, which helps
the simulation remain well behaved and relaxes the demands on computer
resources. However, the calculated electric fields associated with the plasma
currents are no longer consistent with the actual density influencing the col-
lisions; and thus the resistive heating in the plasma is inconsistent in the
region where the actual density exceeds the artificial cutoff. The algorithm
that we present here has no artificial density cutoff and attempts to model
the electromagnetic fields, collisions, and density gradients consistently.

Implicit particle simulation methods [3, 14, 15, 16, 17, 18, 19, 20, 21]
underly a number of kinetic plasma simulation codes and are being used
in studying fast ignition. [22] Implicit PIC permits the use of large values
of w,.At subject to resolving wave and particle Courant conditions for sake
of accuracy and controlling numerical heating and cooling [18, 23, 24] The
implicit PIC algorithms alter the dielectric shielding in a plasma due to
finite wzeAtQ. However, the numerical modification of the shielding is small
if w2 At* << 1/k?A? [24]. In the underdense region of the plasma, where
wpe < wp, it is important to track the propagation and absorption of the
laser accurately; and care should be taken in using an implicit PIC method
so that it does not significantly damp the electromagnetic wave because of
numerical dissipation [3, 18, 21].

Hybrid methods, wherein the plasma is composed of both fluid and parti-
cle species, have been used with success in many applications; and there is a
mature literature [9, 10, 11, 12, 25, 26, 27, 28, 29]. The use of fluid equations
to represent a major component of the plasma, such as, for example, the back-
ground electrons, while other components of the plasma are represented with
a kinetic model, is well motivated if the kinetic features of the fluid species are
ignorable, e.g., if the fluid species is cold or so collisional as to be well approx-
imated as a Maxwellian. The fluid representation introduces a computational
efficiency by reducing the number of species requiring a kinetic description
and/or by reducing the range of time and/or space scales. Important addi-
tional efficiencies may be accrued by introducing well-motivated analytical



reductions of the fluid equations for the fluid species, such as omitting in-
ertial effects when the response of the fluid species can be approximated as
adiabatic, collisional, or dominated by E x B drifts [10, 11, 12, 25, 26, 27, 28].
However, the fluid representation inevitably involves some closure approxi-
mation and loss of kinetic detail. Here we will exploit the use of reduced
fluid equations to limit the kinds of high-frequency wave phenomena that
can occur, but we will retain a kinetic description of all species. In some
respects, a similar point of view is taken in the implicit-moment simulation
methodology [15, 16, 22, 30].

In Figure 1 we illustrate the two-region nature of our algorithm. In the
region of the plasma for electron densities n, < 100n,, we solve the complete
set of Maxwell’s equations in finite-difference form [1, 31, 32] with relativisitic
equations of motion for the plasma particles with binary collisions [13] for all
of the electron and ion species throughout the domain. This description of the
physics is valid if appropriate time steps, cell sizes, and statistical resolution
are employed. At higher densities with a sufficiently cold background plasma,
the plasma can become sufficiently collisional such that the plasma does not
support high-frequency waves. The relatively cold background electrons are
maintained close to a drifting Maxwellian and react to maintain quasineu-
trality (producing return currents to neutralize the energetic electron current
driven by the laser absorption). There can be significant self-magnetic fields
due to currents in the plasma. The cold, resistive electrons in the background
plasma in the high-density region are well described by an Ohm’s law with
electron inertia neglected (Sec. II). The Ohm’s law gives us a prescription for
the self-consistent electric field related to the current in the resistive back-
ground plasma, while Ampere’s law with the option of dropping or retaining
the displacement current relates the sum of the background plasma and fast
electron currents to the curl of the magnetic field. With explicit accumu-
lations of the plasma ion and energetic electron currents from the particle
data, Ampere’s law gives us a prescription for the background electron cur-
rent without having to accumulate the electron current on the grid in the
high-density region. Faraday’s law then relates the time derivative of the
magnetic field to the curl of the electric field, which is used to update the
magnetic field.

The resistive magneto-hydrodynamic (MHD) model proposed here for
the background electron response in the high-density, collisional limit based
on Ohm’s law has been previously introduced and justified by several au-
thors [10, 11, 12]. The reduced equations are shown to recover the results of
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the solution of the complete Maxwell equations in an intermediate density
region, n. << ne < (50 — 100)n. except that the reduced equations are less
affected by particle noise. For even higher electron densities n, 2 50 — 100n,.
the reduced equations are used exclusively. By dropping electron inertia in
Ohm’s law, the reduced equations in the high-density region are not sub-
ject to the restrictions that the plasma frequency, electron Debye length,
and collisionless skin depth must be resolved. Numerical dissipation is easily
controlled in both the low and high-density regions. An important physics
element is that the resistivity in the Ohm’s law should be self-consistent with
the Coulomb collision operator influencing the particle motion; thus, a good
quality collision operator is required [13]. An important distinction in our
approach as compared to the model considered in the work of Davies, [10],
Gremillet, et al., [11], and Honrubia, et al. [12] in the high-density, col-
lisional plasma region is that we retain a particle description for all of the
electrons and ions in the plasma. The particle description for the background
plasma in both the low and high-density plasma domains provides a natural
distributed source for kinetic return currents throughout the system and a
prescription for determining when a background electron should be promoted
to a fast electron and vice versa, and the resistive heating of the background
plasma is accommodated in a natural way in the presence of binary collisions
using the collision operator introduced by Sentoku and Kemp [13]. A particle
is called fast if its velocity exceeds a(7./m.)"/?, where « is a free parameter
(we find a = 5 works well) and T, is the local electron temperature. We will
describe the model more completely in the next section.

In this study we restrict ourselves to a model for the plasma that assumes
that the plasma parameter n,\> >> 1 where n, is the electron number den-
sity and )\, is the electron Debye length. Our representation of the collisional
processes in the plasma, the use of a classical resistivity model, and our eval-
uation of terms in the electron momentum fluid equation for the background
electrons depend on the assumption that the high-density region is a weakly
coupled plasma. In fast-ignition scenarios the assumption that the plasma
is weakly coupled can break down, i.e., the plasma parameter is no longer
large in some regions of the space-time domain. In such a circumstance both
the collision model, the resistivity and other terms in Ohm’s law must be
modified to take into account the proper physics of the warm dense mat-
ter [10, 11, 12]. Such modifications can be made within the framework we
introduce here, but we will defer this to future work; here we restrict our
model to the case of a weakly coupled plasma with a classical Coulomb col-



lision model for sake of simplicity.

An outline for the rest of the paper is given as follows. In Sec. II the
framework for the simulation model is introduced in detail, and equations
are presented. An analysis of the properties of the algorithm is presented in
Sec. III. Model simulations are also presented that address some of the nu-
merical issues in the algorithm in a minimal rendering of the new framework.
In Sec. IV one-dimensional and two-dimensional PIC simulations using the
PSC code [31, 32] extended to incorporate the new framework for low and
high-density plasma are presented. Comparisons are made between conven-
tional, first-principles PIC simulation and simulations with the two-region
model. Our two-region model allows the use of less spatial resolution at high
densities where the electromagnetic skin depth becomes small and a larger
time step because the certain numerical constraints are relaxed. This is illus-
trated in a one-dimensional example with an improvement in computational
speed in excess of 40x. In two dimensions the improvement in computational
speed realized in our example simulations is > 500x. Our implementation
of the two-region framework in the PSC code is a work in progress in some
respects, and the research is ongoing. A summary and conclusions are pre-
sented in Sec. V.

2. Algorithm Equations

In conventional electromagnetic PIC simulation with explicit time inte-
gration, such as in the PSC code [31, 32|, the electric and magnetic fields
are laid down on a staggered grid; and the two curl equations in Maxwell’s
equations, Ampere’s and Faraday’s laws, are solved to advance the electric
and magnetic fields, respectively:

%—?—CVXB—MJ (1)

B
aa—t:—CVXE (2)

Some care is given to charge conservation in obtaining the current J [1, 32,
33, 34]. Charge conservation in the PSC code is described in Sec. 4. 5. 2
of Ref. [32]. In our model, relativistic particle equations for fast electrons,
background electrons, and background ions with full Newton-Lorentz forces
and a binary collision operator [13] are used throughout the system.



If the time step and the mesh spacing are chosen to resolve the plasma
and light-wave frequencies, the Debye length, and skin depth throughout
the domain and there is adequate statistical resolution, then a conventional
simulation can track laser absorption and the transport of energetic electrons
up to some modest plasma density. Use of higher-order spatial interpolation
methods allows the mesh size to be larger than the electron Debye length
without engendering excessive self-heating [1] at the expense of losing the
ability to resolve scales of order or less than the electron Debye length, which
are relevant to Debye sheaths and some wave dispersion effects. The PSC
code uses linear area weighting for its interpolation scheme [1, 32].

In Fig. 2 is shown a conventional particle simulation in one dimension
(1D) using PSC with binary collisions, 200 cells per micron, 100 ion particles
per cell; and 400 electron particles per cell (Z = 4 for copper) in which 1
micron laser light is absorbed in a plasma density gradient with densities
< 360n,.. This simulation describes the interaction of a 40 fs fwhm Gaussian
shaped laser pulse with a peak intensity of 5 x 10*W /cm? at a wavelength
of 1 micron with a copper target at a (constant) ionization state Z = 4.
The target features an exponential density gradient with a scale length of
1.5um between electron densities n, << n. and 4 x 1023*cm =2 followed by a
density plateau of 15 microns length. To minimize the effect of numerical
heating we used a resolution of 200 cells per micron and 100 particles per
cell. The boundary conditions for particles and fields at the end of the box
are 'absorbing’ in the sense that particles are reflected at thermal velocities.

We note that for densities in excess of n. ~ 10n, in the one-dimensional
simulation shown in Fig. 2 the electric field component FE, is well approxi-
mated by the resistive relation £, = nJ® allowing for the particle noise in the
simulation that contributes to the electric field, where n = mvy; /n.e? is the
classical resistivity [35], ve; = 0.51/70, 7,0 = 4\/%lnAe4Zi2ni/(3\/meTg/2)
is the classical electron-ion collision frequency, and J° is the sum of the
background electron and ion currents. The E, = nJ? evaluation plotted in
Fig. 2 is inferred for this simulation; PSC uses E, determined by Maxwell’s
equations from first principles. The total J, current is zero to very good
approximation. Hence, J? ~ —J/ where J/ is the fast electron current. The
agreement of the electric field with the resistive relation is not so surprising
when we consider the equation describing momentum conservation for the
relatively cold background electrons and recognize that the cold background



plasma is collisional:

NeMe(=— + Ve - V)V, = —enE — nemevg(ve — v;)

ot

d
—eneve X B/e — Vpe + (=) colt.e— Pmom.e (3)

dt
where v,.; are the fluid velocities for the background electrons and ions,
ne; is the background electron or ion density, p. is the electron pressure
(assumed a scalar here, but could be a tensor more generally), and the last
term accounts for conservation of the collisional momentum being exchanged
due to collisions of the fast electrons with the background electrons. The
result observed in Fig. 2 suggests that the first two terms on the right side
of Eq.(3) are the dominant terms in the high-density plasma, and balancing
these two terms yields E = n(J. 4+ J;), where J.; are the electron and ion
contributions to the current from the background plasma exclusive of the
fast-electron current. In writing Eq.(3) we tacitly assume that the plasma is
weakly magnetized. The results at high density shown in Fig. 2 motivate the
use of the reduced form of Eq.(3), i.e., an Ohm’s law. In general, the third
term in Eq.(3), the v, x B term, is included in two-dimensional simulations.

When there is a significant magnetic field present, the friction force of
the ions on the electrons leads to a tensor resistivty n,

n =nbb + 7. (I—bb) —n,(bx ) (4)

A prescription for the tensor resistivity has been given in Sec. IV of Bragin-
skii’s review article, which includes the dependence of the resistivity tensor
on the product of the electron cyclotron frequency and the characteristic
electron-ion collision time, and on the charge state of the ions (see Eq.(4.30)
and Table 2 in Braginskii [35]). In our simulations we have devised a simple
interpolation formula to fit Table 2 in Braginskii’s article, which gives the
dependence of 1 on the ionic charge state:

= (1— ol x? —|—a6> Me = r(afx? + ag))
A 2 A

Ne€ Te;

QoM Me

(5)

m =

Ne€3Te; Ne€3Te;



where

B

x:QeTei Qe: £

meC

3T
Tei =

4+/2rInNet Z2n;
/
A=I4+511’2+(5Q Qpy = —%
0

o) = ZO[1.837 + 0.0678(Z — 1)*9),

oy = Z71[6.416 + 4.63(Z — 1)]

oy = Z71%2[0.7796 + 0.094(Z — 1)1
o =1.704

6o = Z 18[3.7703 4+ 0.0961(Z — 1))
61 = Z7MP[14.79 4 7.482(Z — 1)1,

Epperlein and Haines have calculated corrections to Braginskii’s transport
coefficients that are significant for Q.7.; > 1 [36]. The parameters in consid-
eration for the fast-ignition simulations of interest to us satisfy Q.7.; << 1in
the high-density region in our model, and the corrections calculated by Ep-
perlein and Haines are small (less than a few percent). Moreover, for these
small magnetic fields (Q2.7,; << 1), then x << 1 in the Braginskii tensor
resistivity and the resistivity becomes a scalar, = 7, which simplifies the
Ohm’s law. The magnetic field and plasma parameters used in the Braginski
tensor resistivity are assumed to vary on time and space scales that are longer
than the characteristic electron-ion collision time and the electron Larmor
radius.

In fast ignition, when the electron transport in solid densities encoun-
ters higher and perhaps colder matter, the plasma parameter, n.\2, may no
longer be large. In this case the electron collisions are modified from classical
Coulomb collisions in a weakly coupled plasma, which will alter the particle
collision model and the self-consistent expression for the resistivity (derived
from the electron-ion frictional force due to collisional drag) [10, 11, 12]. The
framework introduced here should be able to accommodate these modifica-
tions, but we do not attempt this here.

We now assess the relative strengths of the various terms in Eq.(3) for pa-
rameters typical of fast-ignition calculations based on radiation-hydrodynamics
simulations and experiments for conditions after the plasma has been com-
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pressed but before fast electrons generated by the intense, short-pulse laser
have heated the background high-density plasma: T, = T; = 100eV, n, >
10%n, = 10¥cm ™3, and scale length [ ~ 100 pm in a hydrogen plasma. For
these parameters A, ~ 2 x 107%cm, c/wpe ~ 2 x 107 %cm, wpe ~ 2 x 101671
wo ~ 2 x 10%s71 a characteristic ion acoustic frequency (Ae/l)wp; ~ 10271
and characteristic collision frequencies v, ~ 5 x 10°s™! and v; ~ 8 x 103571
The parameters chosen are somewhat arbitrary, but are intended to be rep-
resentative. At this density the electron plasma and ion acoustic waves are
significantly damped by collisions. As the plasma density increases, the elec-
tron plasma frequency increases proportional to /n.; the acoustic frequency
is approximately invariant if T, is relatively constant; and the collision fre-
quencies increase approximately linearly in n.. Thus, the collisional damping
of the longitudinal waves is more pronounced as the density increases. Before
comparing the terms in Eq.(3), we divide both sides by (n.m.). We assume
that the high-density plasma background evolves on the transport time scale
as dictated by the collision processes. The axial motion of the background
electrons provides a return current to neutralize the fast electrons. An upper
limit on the fast-electron current is set by arguing that the velocity of the fast
electrons cannot exceed ¢, the speed of light; and its density cannot much
exceed the density of all of the electrons near the critical density, n.. Then
at the higher densities the background plasma’s return current is bounded
in magnitude very approximately by en.c, and the drift velocity of the back-
ground electrons is then limited in magnitude to (n./n.)c. The inertia terms
on the left side are then (9/0t 4+ ve - V)ve — (O(w) + O(ve/l))Ve, where
ve < (ne/ne)e, w < wy ~ 2 x 107 and v/l < (n./n.)c/l ~ (n./n.)
3 x 10's71. The electric field term is assumed to balance the electron-ion
drag term (leading directly to n - J), which is of order v v, ~ 5 x 10%s71v,.
The Lorentz force term on the right side of the Ohm’s law is of order
Qeve < wove ~ 2 x 10s7 v, if a signficant magnetic field arises with electron
cyclotron frequency of order the laser frequency as is observed in simula-
tions [12]. This term is smaller than the drag term but is non-negligible. The
magnitude of the pressure term can be estimated as (T./m,)/l ~ 2 x 107%
/1 ~ 6 x10%s71c and is relatively small unless a steep gradient should form.
The collisions of the fast electrons on the background electrons lead to the
last term on the right side of Eq.(3) which is small in (ny/n.)(yrc/ve)(ve/ve)
where ny is the density of fast electrons ny < n., v, is the relativistic factor
for the fast electrons, and vy is the characteristic collision frequency of the
fast electrons, vy << v,. We will also omit this momentum exchange term
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in the simulation examples.

For fast-ignition simulation in high-density collisional plasmas we drop
the inertia terms on the left side of the Eq.(3) and recast the resulting Ohm’s
law in the following form for the background plasma:

E=n-J.4J;) —vexB/c

— Vpe/(ene) + ( d )coll,e—meom,e/<6ne) (6)

dt
This equation will yield an explicit, algebraic determination of the electric
field. We are using a scalar pressure p, = n.T, in the Ohm’s law in our high-
density hybrid model, which can be generalized to a tensor pressure with no
difficulty.

In keeping with the reduction of the Ohm’s law based on the dominance of
collisional effects in the high-density region of the plasma (n. >> n..), we drop
the displacement current in Ampere’s law, Eq.(1), and recast that equation
to solve for the sum of the electron and ion currents in the background plasma
exclusive of the fast-electron current J¢, Jo +J;, =J — Jy,

C
Jo+di= VxB-1 (7)

J; is the current from the fast electrons (those with speeds > a(T./m,.)'/?).
The sum of the electron and ion currents in the background plasma is used in
Eq.(6), which determines E in the high-density region. Charge conservation
and the relation between the charge density and the current accumulations for
the fast electrons and the ions are handled in the high-density region exactly
as in the low-density region [32] . However, in the high-density region Eq.(7)
is used to solve for J.; and J,. is not accumulated on the grid except as a
diagnostic.

In the absence of the displacement current in Ampere’s law, we can take
the divergence of Eq.(7) to arrive at V- (J. +J; + J;) = 0. Use of the
continuity equations then leads to the constraint on charge neutrality from
which we calculate the electron charge density:

Ne = Zn; — Ny (8)

where n; and n; are the ion and fast-electron charge densities accumulated
directly from the particles on the grid. Use of n, from Eq.(8) in Ohm’s law
binds the electron density and the electron dynamics to the overall charge
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neutrality constraint in the high-density plasma. This deduced charge den-
sity should be a good approximation to the charge density from the back-
ground electrons accumulated on the grid. Equation (8) is one prescription
for determining n. in Ohm’s law. Alternatively we can use the n. deter-
mined directly from the particle electrons with and without a correction to
the background electron particle drift so that the total current is consistent
with Ampere’s law in the high-density region in each cell. It is these latter
two options that we employ in the PSC PIC-hybrid simulations. Note that
the divergence of Ampere’s law plus the continuity equation implies Poisson’s
equation (and quasi-neutrality if the divergence of the displacement current
is small). Because we are dividing by the electron density n. in certain terms
on the right side of the Ohm’s law and computing the gradient of the scalar
electron pressure n.T,, we find that temporally or spatially smoothing n, is
needed to deal with particle noise. In doing time averages we use a simple
lag average over a few laser cycles, < n, >"= an? + (1 — a) < n, >""!
where 1/a is the memory in time steps of the lag average. We will compare
the grid-interpolated particle electron current in the full PIC and two-region
hybrid simulations in Sec. 4.

The remaining terms on the right side of Eq.(6) are determined as follows.
The background electron mean drift can be determined in either of two ways.
A direct calculation can be made from the first moment of the particle elec-
trons accumulated locally on the spatial grid, which has to be computed as
part of calculating the local electron temperature from the background elec-
trons. An alternative means is to subtract the fast-electron and ion currents
explicitly accumulated from the particles from the sum of the electron and
ion currents to obtain the electron current J, from which v, = —J./(en.).
The background electron temperature is computed from the time-dependent
second velocity moment of the background particle electrons deposited on
the spatial grid. The second velocity moment can be noisy and require spa-
tial and/or temporal smoothing. There is significant relevant experience
with the pressure term reported in the literature on the implicit moment
method [15, 16, 30]. The resistivity coefficient in the Ohm’s law depends ex-
plicitly on the background electron temperature, which is determined from
the particle representation of the background electrons and evolves as the
electrons cool or heat. The term associated with the collisional momentum
exchange of the background electrons with the fast electrons in Eq.(6) could
be computed directly from the particle collisions between the fast and back-
ground electrons.
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The prescription given here for the evaluation of the electric field from
Ohm’s law using moments of the particle velocity distributions emulates some
of the philosophy of the implicit moment equations method, while incorpo-
rating some physics-based simplifications of the Ohm’s law appropriate for
studying the macroscopic-timescale transport of the fast electrons in the
high-density collisional plasma. The simplifications used in the Ohm’s law,
i.e., omitting the electron inertia terms and in some cases retaining only the
first two or three terms on the right side of Eq.(6), as motivated by consider-
ation of the physical parameters encountered in the collisional high-density
fast-ignition plasmas, share a common basis with earlier work using hybrid
algorithms [10, 11, 12, 25, 26, 27, 28|.

From the curl of E in Eq.(2) the magnetic field is updated throughout
the low and high-density regions. With E and B determined, the particle
equations of motion are advanced for the trajectories of the fast electrons and
the background plasma electrons and ions throughout the plasma. The fast
electrons are differentiated from the assumed near-Maxwellian background
electrons by having been heated by the laser when the laser is absorbed
near the critical density. The contribution to the total current from the fast
electrons is computed at every time step. To differentiate the fast electrons
from the colder background electrons in the low-density region, when an
electron achieves a speed exceeding 5./T./m, in the background plasma,
where the background scalar electron temperature 7, is computed locally
from the background particle electrons at the previous time step, the electron
is declared to be a fast electron until its speed drops below this threshold.
Note that the threshold speed is allowed to evolve with the scalar electron
temperature T,(x,t). The choice of 5y/T./m. for a cutoff is sufficient to
capture the lowest moments of the background electron velocity distribution
up through the heat flux to high degree of accuracy. We can calculate the
density, mean drift, scalar pressure, and scalar temperature moments of the
background particle electrons to evaluate quantities on the right side of the
Ohm’s law, Eq.(6), as needed.

With relatively little additional effort the displacement current can be
restored in Eq.(7) and a reasonably straightforward solution for the electric
field can be obtained:
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I+ J7 = (c/4m)V x B" — J} — (E"T/2 — E"7/?) /am At (9)
E* =n(J7 +J7)

— (eng)"'Vpl —vi x B"/c (10)

E"1/2 = 2E* — (1 — )E" V2 /(1 + ) (11)

Equations (9) and (11) are used in Eq.(10) to determine E*. These equations
are linear in E"*/2 and merely require an algebraic solution. By including
the displacement current, we include charge separation effects. In place of
Eq.(8), taking the divergence of Ampere’s law including the displacement
current and using the continuity equation lead to the following form of Pois-
son’s equation to determine the background electron charge density in the
high-density region:

nZ:Zn?—n}‘—V-ET/@TB (12)

For simplicity in solving the Ohm’s law for the electric field, we suggest that
the calculation of n, from Eq.(12) use an explicit electric field Ef = Er~1/2
in the computation of the —V-ET /47e term. The analysis and examples pre-
sented in the following sections of this paper only address the algorithm based
on Eqs.(2-7) except where noted. With the displacement current included
as described, analysis indicates that the important stability constraints and
all of the accuracy constraints associated with the explicit solution of the
high-density model equations excluding the displacement current persist.

In the implementation of our two-region model, we advance the particle
equations of motion with binary collisions throughout the domain. In the
low-density region and over a few cells (controlled as an input parameter)
beyond the interface between the regions, Ampere’s law is solved in conven-
tional explicit fashion to update the electric field. On the high-density side
and over a few cells on the low-density side of the interface between regions
(also controlled as an input parameter), Ampere’s and Ohm'’s laws are solved
simultaneously for the electric field. The solution for the electric field is al-
gebraic and requires no internal boundary condition at the interface between
regions. In the region near the interface where two alternative expressions
for the electric field are available, we have the following options: spatially
interpolate between the two solutions, spatially smooth the electric field in
the region around the interface, or use the low(high)-density solution on the
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low(high)-density side with no interpolation or spatial smoothing. Faraday’s
law is solved throughout the domain to update the magnetic field from the
curl of the electric field. Conventional boundary conditions on the electro-
magnetic fields and the particle motion at the system boundaries are used.

Energy conservation and flow in the high-density region differ from that
in the low-density region as follows. The continuum equations in the low-
density region yield the standard relations:

o0 ,E* B2 ExB
5iler T o) =BTV T

(13)

where J = ) _J, and the sum is over all species s computed locally in space;
and in the absence of explicit sources and sinks of plasma kinetic energy, the
time derivative of the (relativistic or non-relativistic) kinetic energy density
K E, for each species satisfies

d
—KE,=E-J; 14
o (14)
where s designates the species.

The continuum equations in the high-density region (omitting the dis-
placement current) yield

0  B? ExB

Z(ZY=—E-J—¢V-

ot ( 8m ) v 4
where J = J; + J. + J;. We can then use Eq.(6) to evaluate E. In the
limit that the resistivity dominates the right side of Eq.(6), we obtain the
following relation:

(15)

0 A B? ExB
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(16)

and Ampere’s law is used to evaluate J, viz., J = ¢V x B/4w. However,
Eq.(14) still dictates the relation between the Joule heating E - J involving
the particle currents and the time derivative of the kinetic energy densities
of each species. In the high-density region with the displacement current
omitted, the field energy is composed only of the magnetic energy, which is
dissipated in part by resistive heating of the background plasma if there is
a net current and can be driven up or down by the net electromagnetic flux
through the boundaries of the domain.
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In the high-density plasma the reduced field equations support neither
light waves nor electron plasma waves because of the high collisionality, the
neglect of electron inertia in the Ohm’s law, and the omission of the dis-
placement current in Ampere’s if this option is used. The reduced Maxwell’s
equations can be described as the Darwin, quasi-neutral limit of Maxwell’s
equations when the displacement current is omitted. The reduced equations
support self-consistent magnetic and electric fields arising from the currents
in the plasma, charge polarization, and kinetic return currents to maintain
quasi-neutrality for long wavelength and low-frequency phenomena. The elec-
tric and magnetic fields are assumed continuous across the boundary between
regions, which requires that the Ohm’s law and the neglect of the displace-
ment current be good approximations near the boundary between the two
regions. The particle equations of motion for the fast electrons and the back-
ground plasma are integrated across the entire domain without regard for the
boundary between the two regions. Thus, the particle fluxes and currents
throughout the plasma are reasonably continuous, and the resistive heating
of the background plasma is modeled with a kinetic description. Coulomb
collisions [13] of the charged particles are modeled throughout with sufficient
accuracy so that there is consistency with the resistivity in the Ohm’s law.
Figure 2 illustrates that this is possible.

By using a reduced physics model in the high-density, collisional plasma,
we intentionally abdicate the ability to simulate all of the physics that is sup-
ported by a more complete set of equations. For example, electron plasma
oscillations and light waves are not admitted by the equations used in the
high-density region. In consequence, electron two-stream and electron beam-
plasma instabilities cannot occur in the high-density plasma. However, ow-
ing to the high collisionality (the electron-electron and electron-ion collision
frequencies are substantial fractions of the electron plasma frequency) the
high-density plasma is stable with respect to these instabilities. In contrast,
an instability like the ion-acoustic drift instability could occur in our high-
density model equations if the relative drift of warm electrons with respect to
the ions exceeds the ion sound speed and if ion-ion collisions and gradients
that affect the instability are not too strong. Furthermore, our equations
also allow low-frequency Weibel-like and current filamentation instabilities
to occur in both the low and high-density regions.
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3. Analysis of the algorithm

To understand what numerical constraints apply to the reduced equations
in the high-density region, we introduce a model set of finite-difference equa-
tions and analyze some of the properties of these difference equations in this
section. The model finite-difference equations capture the main elements of
the high-density equations. We also present some results from the numer-
ical solution of the model finite-difference equations. The analyses provide
insight into the numerical properties of the algorithm: numerical stability,
dispersion, and accuracy. Here we focus just on the time-integration issues
and introduce difference equations in time.

Jo+ I = (c/4m)V x B" = J} (17)
E* =n(Jo +J7)
— (en®)'Vnl T + (en) """ x B"/c (18)
E"1/2 = 2E* — (1 — )E" V2 /(1 + €) (19)
Bn+1 — B
A = —cV X E“+l/2, B = (20)
B2 — (B""' + B")/2 (21)
At
Xn—i_l/2 = Xn + 7(1 — EQ)Vn (22)
Vn+1 — V" + Q_At[En—s—l/Q
m
+ (v £ v x B2 /] — v A" (23)
AN
Xn+1 — Xn 4 7(1 4 62)V7er1 (24>

where € » are centering parameters and {x, v} are the particle positions and
velocities. In Eq.(18) we have omitted the term deriving from momentum ex-
change between the fast electrons and the background electrons; it is straight-
forward to include this term. The currents Ji" and J’ are accumulated on the
grid using particle data {x,v}". As written, the finite-difference equations,
Eqs.(17-24), describe an explicit integration scheme with the displacement
current term and the electron inertia term in Ohm’s law omitted.

In the electrostatic limit with no background magnetic field and no fast
electrons, the high-density equations admit ion acoustic waves. From Eq.(17),
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J.+J; =0, and we set n, = Zn; in Eq.(18). Using standard techniques for
the analysis of the normal modes of the finite-difference equations, |1, 3, 18]
we linearize the difference equations, take Z = 1, define A\ = E""/E" =
exp(—iwAt) for a monochromatic wave, and obtain the following dispersion
relation from the determinant of the coefficients of the system of linear equa-
tions:

[)\<1 + 61) + (1 _ 61)] ()\ — 1)()\ 4—)\1 + V“At) _

EEIN:

— T[)\(l + €9) + (1 — €)] (25)

where v;; is the ion-ion collision frequency, ¢ = T,/m; is the square of the

sound speed, T, is the electron temperature, and the electrons are assumed

to respond adiabatically. For ¢; = €5 there are two branches of the dispersion
relation:

A=—(1—e)/(1+¢) (26)
(A—=1)(A =14 vuAt) k22 A2
AN 4
— sin(wAt/2) ~ £ (ke At/2)(1 F vy At/2) (27)

The mode described by Eq.(26) is a marginally stable odd-even oscillation
for ¢, = 0 and is damped for ¢; > 0. Alternatively, with ¢; = 0, occasional
averaging, E"*1/2 = (E"*+1/2 1 E"~1/2) /2 will remove the odd-even mode. The
mode corresponding to Eq.(27) is the ion acoustic wave with damping due
to ion-ion collisions. With €; # €5 the ion acoustic wave can be destabilized
for small values of v;;. By relating n. for use in Ohm’s law to Zn; and the
ion dynamics through the use of Eq.(8) (or Eq.(12)), then the ion dynamics
and the adiabatic response of the electrons are properly married to charge
neutrality (or Poisson’s equation) to obtain the self-consistent determination
of the ion acoustic wave. If instead n. is determined by the electron particle
equations and used in the Ohm’s law with no charge neutrality constraint
and Ampere’s law is used to close the system, then a somewhat redundant
description of the electrons is introduced, the coupling of the ion dynamics
back into the electric field solution is lost, and there is no ion acoustic wave.
If the displacement current is retained as in Eq.(9) and n, is determined by
Eq.(12), then we recover the standard dispersion relation for ion acoustic
waves including the dispersive correction due to charge separation effects:
w? = k2c?/(1 + k*)\?) in the limit that v; = 0 and At = 0.
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We have integrated the model difference equations, Eqs.(17 -24), in the
electrostatic limit with a small-amplitude random noise source added to the
right side of Eq.(18) and with the prescriptions that the perturbed electron
density is given by dn. = —Vnox. and the electron and ion displacements
and velocities are fluid-like quantities shared by all electrons and ions in a
cell. We introduce the quantity N which represents the number of time steps
between the occasional averaging of the electric field at successive time steps.
Figure 3 shows the results of integrations of the model difference equations
in the electrostatic limit for ion acoustic waves with a finite noise source, no
collisions, ¢; = e = 0 or 0.02, e/m = 1, ke; = 1, Ny = oo or 75, velocity
amplitude perturbation v = 10~*, and 10% random noise amplitude relative
to the wave amplitude. The spatial dependence has been Fourier analyzed,
and only a single wavenumber £ is retained. For kcsAt = 0.1 the fluid velocity
at a given position vs. time oscillates at the acoustic frequency. With no
decentering and no periodic averaging there is an excursion in the electric field
energy, but no numerical instability. With decentering or periodic averaging,
the solutions are well behaved.

If a small amount of decentering is introduced in the equations of motion
in the finite-difference equations to control the odd-even mode, what might
this decentering do to solutions of the difference equations in the low-density
region where the electron plasma oscillation is an additional electrostatic
normal mode? We replace Eqs.(17-24) in the electrostatic limit (B = 0)
with

En+1/2 o En—1/2

At

solve for E"*'/2 add a small noise source, and use Eqs.(22 - 24) for the
cold-plasma, fluid-like response to the electric field. These equations support
electron plasma oscillations. Figure 4 displays the results of integrating these
equations with w,.At = 0.1, e/m = 1, wye = 1, no periodic time-averaging
of successive time levels, no collisions, displacement amplitude perturbation
dz = 107*, and 10% random noise amplitude relative to the wave amplitude,
for e, = 0 and 0.02. The fluid displacement oscillates at the electron plasma
frequency. The decentering contributes a small amount of damping scaling
with esw,.At. In the absence of physical dissipation there is no fluctuation-
dissipation theorem [1] for the model system, and the random noise source
causes a weak secular growth of the field and kinetic energies.

Figure 5 shows results from simulations of laser absorption in a density
gradient in two spatial dimensions with the PSC code including the decen-

= —An(J7 +J7), (28)
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tering parameter €5 in the equations of motion. These simulations model the
interaction of a semi-infinite laser pulse with a short rise time of 30 fs and
a peak intensity of 102°W /cm? with a short plasma density gradient and a
peak density of 100n.. The simulations were performed at a resolution of 50
cells per wavelength and 100 particles per cell. The electron density climbs
from vacuum to 100n.. The PSC results with e = 0 and 0.02 are much the
same, but with e = 0.08 there are significant discrepancies in the results
compared to the other two simulations suggesting that there is too much
numerical dissipation with e; = 0.08.

The analysis of the high-density model equations indicates that the finite-
difference equations support an odd-even oscillation if the integration scheme
is centered, and this mode is damped if properly decentered. There is no
strong evidence of a persistent growing odd-even oscillation in the numeri-
cal integrations of the model equations with a noise source included when
the equations are centered or when the equations are slightly decentered,
although a transient excursion in the electric field energy is observed in Fig.
3 when the scheme is centered. We have shown that a small amount of de-
centering can be included in the PSC particle pusher with no effect on the
simulation results.

We next address some of the electromagnetic modes supported by the
finite-difference equations. Consider the simplest fluid analysis of Eqgs.(2,6,7)
and the linearized cold-plasma fluid equations of motion for fields and fluid
quantities (vy, vy, By, By, By, By, Jz, J,) with wave propagation k = £,z and
uniform background magnetic field By = Byz. The reduced Ampere’s law
and Faraday’s law yield:

10 47 0
VXVXxE=KE=-—-_-VxB=-——-J 29
VX N c ot % 2 ot (29)
Multiplying the linearized electron and ion cold-fluid equations for 7 = 1
by the number density ny and adding them with the electron inertia and
collisions neglected, we obtain

B
nomiaVZ’ = Gno(VZ‘ — Ve) X B()/C —J= ;—; X nomigvi (30)

We next substitute the expression for J from Eq.(30) in Eq.(29) to obtain
one equation for the electric field E. A second equation for the electric field
is deduced from the ion equation of motion: E = —v; x Bg/c+ (m;/e)dv;/0t.
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Equating the two expressions for E and Fourier analyzing in time, —iw =
0/0t, we obtain the following vector equation:

w? w?
[(—aﬁ + Q) vy + 1wy X + [iwvy; + (aﬁ —Q)u. )]y =0 (31)
where a = w2 /k2¢® and Q; = eBy/m;c is the ion cyclotron frequency. The
determinant of the velocity coefficients in Eq.(31) yields the following disper-

sion relation:

w?

(a— —Q)* —w* =0 (32)
Q;

The dispersion relation in Eq.(32) yields Alfvén waves at long wavelengths
and low frequency, w = £k, v, = £k,c{;/w,; for w << €;, and whistler
waves at short wavelengths and high frequencies, w = £(k2c?/w?;)Q; for
w >> ;. The whistler mode having the higher frequency sets the more
stringent constraint on the time step required for stability using an explicit
time integration. We can write the stability condition as

CQ

2 Q.

lwAt| = (k.Az) Ww—owoAt < O(1) (33)
where Q. = eBy/m.c is the electron cyclotron frequency. Based on experience
in simulations of fast ignition [12], we estimate that Q. /wy < O(1). In order
that the explicit solution of Maxwell’s equations remain well behaved at the
highest density in the low-density region, then c/wy, Az > O(1). We also
have k,Az < 7. If the transition from the full Maxwell equations to the
high-density equations occurs at 1007, i.e., w3, /wi = 100, then wyAt < 0.1
is required for stability and needed for accuracy; and the inequality in Eq.(33)
is also satisfied.

Now consider the situation when electron-ion collisions are included in the
electromagnetic modes at plasma densities exceeding 100n,. with a negligible
applied magnetic field (By =~ 0). Adding the electron and ion equations of
motion in the cold-fluid limit, one obtains nom;0v;/0t = (m./e)ved, from
which we solve for J. We then use Eq.(29) to determine E as before and use
the alternative equation for E from the ion equation of motion previously
obtained to arrive at a dispersion relation. At these high densities and for
relatively cold background electron temperatures, v,; >> ()., the dispersion
relation yields a damped electromagnetic mode:

2.2
—Z.kz—cl/ei (34)

2
pe
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We note that the right side of Eq.(34) is not a function of density, except for
InA in the collision frequency. Analysis of the difference equations for this
mode yields sin(wAt) = —i%yeiAt, and the right side of this equation must
be less than unity in magnitﬁede so that the explicit integration of the finite-
difference equations remains stable for this damped electromagnetic mode.
The stability condition is then

62

(b, Az)? ———— v, At < 1 (35)

2 A2
w2 Az

It is convenient to evaluate this condition at the transition between the low
and high-density regions, e.g., 100n., in which case ¢ /w? Az* = O(1). Then
Eq.(35) is equivalent to v; At < O(1)(k,Az)™2 < O(1/7?) at 100n,.

In addition to the time-step constraints described in the preceding in the
high-density plasma where the Ohm’s law is used, deduced from or given by
Eqgs.(27), (33), (34), and (35), we must still resolve electron and ion motion
across the grid, vAt/Axz < 1, the electron cyclotron motion Q.At < 1, and
the collision frequencies for the fast electrons and the background electrons
and ions, for sake of accuracy and stability of the simulation. The accuracy
constraints on the electron-electron, electron-ion, and ion-ion collisions of
the background plasma persist in the high-density region. The electron-ion
collisions have to be computed with sufficient accuracy so that these collisions
are self-consistent with the resistivity in the Ohm’s law. We are investigating
how to compute the collisions in the background plasma efficiently but with
sufficient accuracy. Subcycling the collisions is one option or we may use
simplified collision operators exploiting that the background ions and cold
electrons remain close to thermal equilibrium at high collisionalities. The
plasma frequency does not have to be resolved in the high-density region.
The gradient lengths of the fields and the plasma must be resolved by the
grid in the high-density region but not the skin depth nor the Debye length.
However, all of the standard accuracy and stability conditions still apply in
the low-density region where the conventional explicit time integration of the
complete Maxwell and particle equations is undertaken [1, 31, 32].

The use of the reduced magnetohydrodynamic equations in the high-
density region is justified because the reduced equations yield the same re-
sults for problems of interest as the solution of the complete Maxwell’s equa-
tions for the electric and magnetic fields in the transition region where the
plasma has become relatively collisional. The solution for the electric field
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is reasonably continuous. If the electric field is continuous and smooth, then
Faraday’s law will generate relatively continuous magnetic fields across the
interface. The PIC and complete Maxwell equations solution in the low-
density region suffers more from particle noise than does the solution of the
reduced equations (the latter set has eliminated electron plasma waves and
light waves, so its thermal fluctuation level is inherently lower [1, 3, 24]).
We have experimented with spatial smoothing of the computed electric field
across the transition boundary in case it is needed. So far in our two-region
extension of the PSC, we have not had to do any spatial smoothing of the
electric field across the boundary between the low and high-density regions
(although we digitally smooth the electric and magnetic field in the high-
density region) nor have we had to decenter the PIC equations of motion
to control an odd-even oscillation. In our test-bed computations using the
model equations given in the preceding, we have had good success with the
following two simple spatial smoothing algorithms.
The first smoothing scheme consists of iterating the following relation

1

~(E, +2EY + EV))) (36)

(r+1)
E; 7 (Eicn i

over an interval surrounding the boundary between the low and high-density
regions, where 7 indicates the iteration level and the subscript j indicates
the spatial grid index. In practice, we limit the number of iterations to a
small integer. We have used intervals from three cells on either side of the
interface to the entire overdense domain and obtained good results.

A second spatial smoothing scheme worked equally well:

E; = 0E; + (1 - B)E} (37)

where § = (i — AL/2Az — j)/AL, AL is the interpolation interval, i is
the grid cell index denoting the boundary between the low (I) and high (II)
density regions, i —AL/2Azx < j <i+AL/2Ax, and E! is the electric field
determined by the low/high-density field equations. In this second smoothing
scheme the electric field is solved using the equations of region I for j <
i+ AL/2Az and the equations of region II for j > i — AL/2Ax.

Figure 6 shows the results of integrating the model finite-difference equa-
tions for propagation of a linearly polarized electromagnetic wave (E,, B;)
into a density gradient with a very weak noise source in the plasma current
using the first smoothing scheme with just a single pass of the smoothing op-
erator. In addition, we have included the displacement current as described
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in Egs.(9-11) We display B, and E, vs. z at t = 125 where the boundary
between the regions is at z = 37.5 with parameters e/m, = ¢ = wy = 1,
At = 0.025, Az = 0.05, system length L, = 50, AL = 40Az, incident
wave amplitude in vacuum B,y = 0.01, noise amplitude in the plasma cur-
rents 10710, suppressing electron inertia and electron pressure in the Ohm’s
law for the background electrons, and with spatial variation of the electron
plasma frequency and electron-ion collision frequency as shown in Figure 6a.
Both smoothing schemes obtained much the same results which differ neg-
ligibly from doing no smoothing or interpolation of the electric field across
the interface between the regions.

This section of the paper has presented an analysis of the time-integration
characteristics of the reduced physics model used in the high-density region,
described an extension that includes the displacement current in Ampere’s
law, discussed two smoothing schemes for the electric field, and illustrated
some of the algorithmic issues in a simplified testbed model. The reduced
physics model in the high-density region removes light waves and electron
plasma waves; the electromagnetic skin depth and electron Debye length
do not have to be resolved by the spatial mesh; and the time step is not
constrained by the electron plasma frequency in the high-density region. The
simulations presented in the next section illustrate that the new PIC-hybrid
framework can achieve a large computational savings by allowing the use of
larger time steps and a larger spatial grid cell widths, which then allows the
use of fewer total particles for a system with the same physical dimensions
while maintaining the same number of particles per cell.

4. PSC Simulations

We have extended the PSC code into a prototype two-region code and
undertaken one-dimensional (1D) and two-dimensional (2D) simulations to
test the new composite simulation framework. First we report experience
with a few 1D simulations. The 1D simulation undertaken with PSC (full
Maxwell equations and no two-region extension) shown in Fig. 2 is used as
a benchmark for simulations with the two-region, extended PSC+ code. In
this simulation a laser pulse is propagated into a plasma density gradient.
The parameters for this 1D simulation are described in Sec. 2. The interface
between the complete Maxwell equations solver and the high-density field
solver based on Ohm’s law is located at the point where the initial density
profile reaches 90n., approximately at 9 microns. The PIC two-region sim-
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ulation was performed at a resolution of 100 cells per wavelength, 100 ion
particles per cell, and 400 electron particles per cell (Z = 4 for copper).
With 200 cells per micron (cpm), 100 ion particles per cell, and 400 electron
particles per cell, PSC required 64 cpus and 2 hours of wall clock time to
do the simulation in Fig. 2. The computations increase linearly with the
total number of cells for fixed number of particles per cell and fixed time
step, and become impractically large in 2D and 3D if we want to under-
take many simulations, each with reasonably short turnaround times. In the
1D PSC simulations we pick a static boundary between the low-density and
high-density regions. In the 2D PSC simulations the boundary between the
two regions is again static, and the boundary is planar (a constant density
surface at the beginning of the simulation). The electric field is determined
up to and including the boundary by the low-density Maxwell-PIC equations,
and the electric field in the high-density region is determined by Ohm’s law
omitting the gradient of the electron pressure and the momentum exchange
term with the fast electrons. In 2D the v, X B term is retained on the right
side of the Ohm’s law, but not in 1D. So far we have not employed any of the
spatial smoothing algorithms operating on the electric field across the low to
high-density interface described in Sec. 3 in the PSC simulations. For the
magnetic fields in the high-density region that arise in the 2D simulations,
we find that Q.7.; << 1, for which the Braginskii resistivity is a scalar (Sec.
2).

We have undertaken two 1D two-region PSC simulations (Fig. 7) with
and without the displacement current in Ampere’s law in the high-density
region. The displacement current is retained in the high-density region of
the 2D two-region hybrid simulations with the ve x B term in Ohm’s law
determined directly from the electron particle mean velocity accumulated on
the grid. The electron density used in Ohm’s law in the high-density re-
gion in this simulation is computed either directly from the electron particle
data or from the electron particle data with a current correction to enforce
consistency with Ampere’s law, Eq.(7). In 1D the current correction is cal-
culated by adding a drift to all of the background electrons in each cell such
that the total J, particle current summed over all species (and time-averaged
over three laser cycles to smooth the data) is zero. The electric field, back-
ground electron density, and electron temperature are digitally smoothed in
the high-density region with a single-pass 1-2-1 filter. The plasma currents
used in Maxwell’s equations are digitally smoothed over the entire domain
similarly. The physics parameters of the two-region PIC-hybrid simulations
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are identical to those of the PIC simulation described in Fig. 2. The inter-
face between the low and high-density regions is located at the point where
the initial density profile reaches 90n., approximately at 9 microns. The
two-region PIC-hybrid simulation was performed at a resolution of 100 cells
per wavelength, 100 ion particles per cell, and 400 electron particles per cell.
Figure 7a shows the comparison of PSC and two-region PSC+ for 100 cpm.
The electric fields vs. z at 93 fs agree well with one another and with the
E, = nJ! relation. Recall that J? is the current carried by the background
electrons and ions excluding the fast electron current. We note that the elec-
tron density climbs to 360n, for which v,;At > 1. The noise reduction in the
high-density region in the two-region simulation is dramatic.

Figure 7b shows the comparison of the longitudinal electric field E, vs.
z in the two two-region PSC+ simulations with n. in Ohm’s law determined
directly from the electron particle data with no current correction, and with
100 particles per cell per species and 20 cells per micron or 100 cells per
micron throughout. The boundary between the low and high-density regions
in the two-region simulations was taken at 9um for 100 cpm and 7um for 20
cpm. As the spatial resolution decreases, the time step is increased so that
the Courant conditions are maintained. However, this forces the boundary
between the low and high-density regions to shift to lower density to limit
the maximum value of w,At < O(1) to maintain stability and accuracy
in the low-density side of the simulation. The electric fields compare very
well. With the five-fold increased time step and five-fold decreased number
of cells and particles, the 1D two-region simulation for 20 cpm should be
at least 25x faster (the operations count in the simulation scales linearly
in the product of the number of time steps times the number of particles,
excluding considerations of the binary collisions whose computational scaling
is stronger than linear). In 2D the simulation is expected to run at least
53 = 125x faster and more than 625x faster in 3D compared to using the
conventional PSC code if the physical time and spatial dimensions are held
fixed. Because the binary collisions are a large contributor to the operations
count, a larger savings in run time is in fact realized for a five-fold reduction
in spatial resolution per spatial dimension with fixed number of particles per
cell because of the particle sorting required in the binary collision algorithm.

In Figs. 8 and 9 we compare three 1D PSC simulations using the same
parameters as in Fig. 7a: full PIC (same simulation used in Fig. 7a), two-
region hybrid model with n, computed directly from the particle electrons,
and two-region hybrid model with the displacement current retained as in
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Eq.(9) and n. computed directly from the particle electrons with a current
correction made to ensure consistency with Ampere’s law. Plots of E,, nJ?,
T,, and n. vs. z are shown from the three simulations in Fig. 8. Diagnostic
plots of J/ and the total particle J, vs. z from the three simulations are
shown in Fig. 9. We do not compare the ion temperatures as the results for
the ion dynamics showed negligible differences. We note that the E., nJ?, J/,
T,, and n. data differ very little in the three simulations, although E, in the
low-density region is relatively noisy and there is noise in E, at high density
in full PIC. The total J, diagnostic in the high-density region shows the most
significant differences between the three simulations. It is important to note
that the two-region model in 1D invokes J, = 0 in the high-density region if
the displacement current is omitted and 47.J, = —0F, /0t if the displacement
current is retained. We also note that in the full-PIC simulation in the
high-density region J, = 0 to very good approximation implying that the
displacement current OF, /0t is very small (Fig. 9a), which lends support to
the assumptions made in the hybrid model. Because the displacement current
is small in the high-density region, it is sufficient that the current correction
used in the third simulation tries to recover J, = 0 which is equivalent to
satisfying Eq.(8), because the difference between J, = 0 and 47J, = —0F, /0t
is small. While the total .J, particle current in Fig. 9b is small compared to
J/ in the high-density region, the total .J, particle current in the high-density
region in Fig. 9c, which includes the current correction, is even smaller; and
a better approximation to the full PIC results is achieved. We conclude that
using n, directly from the particle electrons in the Ohm’s law without the
current correction to enforce consistency with Ampere’s law leads to inferior
results for the two-region hybrid model, although the results in Figs. 7 and
8 are not much affected by the current correction. We note that the total
cpu time consumed in the low-resolution 1D PIC-hybrid simulation is 44 x
smaller than the total cpu time in the high-resolution 1D full PIC simulation
for this example.

In Figs. 11-15 we illustrate the extension of the 1D two-region PSC simu-
lation to 2D. We compare 2D full PIC to two-region hybrid PSC simulations
at full resolution (100 cpm) and reduced resolution (20 cpm) for a fixed do-
main size of 30um x 30um. In the 2D simulations we use 10 ions per cell and
40 electrons per cell. The two-region hybrid simulations include the displace-
ment current and use n, determined from the particle electrons with current
correction for consistency with Ampere’s law. The current correction in 2D
involves computing the background electron density from the particles after
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adding a local vector drift to the background electron velocities in the 2D yz
simulation plane so that Eq.(7) is satisfied in the high-density region. The
simulation addresses laser propagation, absorption and electron transport for
the incident laser pulse with Gaussian transverse profile (6 micron full width
at half maximum). In these simulations we used either 100 cpm or 20 cpm
and 10 ions per cell/40 electrons per cell modeling a copper plasma. The
electric and magnetic fields, background electron density, and electron tem-
perature are digitally smoothed in the high-density region with successive
1D 1-2-1 filtering (single pass) in the two directions. The plasma currents
used in Maxwell’s equations are digitally smoothed over the entire domain
similarly. The electron density climbs to 360n.. The other parameters for
these simulations are the same as in the 1D simulations described in Fig.
2, 7-9. The density profile is initially uniform in the transverse direction
and identical to the 1D profile in the longitudinal direction. The interface
between the two regions (full PIC and Maxwell’s equations and PIC plus
Ohm’s law) is static and located where the density exceeds 90n, at z = 8um.
The laser is incident at z = 0, propagates in z, and has a finite spot size in
y. We plot n. in Fig. 10, 7. in Fig. 11, F, in Fig. 12, B, in Fig. 13, total
J. in Fig. 14, and the fast electron current J/ in Fig. 15, all at at 90 fs. We
plot 2D contours and axial line-outs vs. z in the midplane, except for B,.
The comparisons of the results are generally good, but there are some
modest differences in the longitudinal electric fields, the magnetic fields, the
electron temperatures, and the longitudinal currents. The PIC-hybrid simu-
lations results for E, are significantly less noisey in the high-density region
than the full PIC results. The numerical noise in the full PIC simulation lead-
ing to fluctuations in the electric field of the order of < E? >'/2x 0.001 Ej
(Ey and By are the incident electric and magnetic field amplitudes in the
laser) cause a rise in the background temperature from 100eV up to 150 eV
even before the arrival of laser-driven electrons. At 90 fs the background
electron temperature T, is slightly higher near the laser beam axis in y for
z > 8pum in the full PIC simulation than in the PIC-hybrid simulations shown
in Fig. 11. This reduces the collisionality and the resistivity of the plasma
deep in the target, i.e., at z > 20 um at the time shown here. However, the
electromagnetic field noise and reduced collisionality affect the transport of
the fast electrons very little in the full PIC simulation as compared to the
PIC-hybrid simulations in Fig. 15. Numerical self-heating can be mitigated
by higher-order particle shape functions or increased number of particles per
cell, both of which are beyond the scope of the present study. In contrast,
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the numerical noise level in the PIC-hybrid simulation is lower, on the order
of 107* E,.

In Fig. 11 there is a difference in the electron temperature profile at low
densities and well off the axis in z determined by the centroid of the incident
laser in the low-resolution simulation results shown in Fig. 11c¢ compared to
the results in Figs. 1la and 11b. Both the high and low-resolution simu-
lations exhibit some numerical heating of the electron velocity distributions
in the low-density full-PIC regions of the simulations. In the low-resolution
simulation the resolution of the electron Debye length and the statistical
resolution are less than in the high-resolution cases, which fact makes the
numerical heating of the electron velocity distribution somewhat stronger in
the full-PIC simulation region of Fig. 11c. We think that this contributes to
the difference observed in the side lobes of the electron temperature profile
in Fig. 1lc compared to the profiles in Figs. 1la and 11b. If significant
numerical heating is occurring in the full-PIC region of the PIC-hybrid sim-
ulations, this can be mitigated by using a higher spatial resolution only in
the full-PIC low-density region; the efficacy of this strategy will be studied
in future work.

There are also differences in the small magnetic fields that arise at den-
sities m. > n. in the full PIC and PIC-hybrid simulations (Fig. 13). On the
high-density side of the interface between the low and high-density models,
there is a small axial magnetic field B, =~ 0.01By located in the density ramp
before the plateau (see Fig. 13b,c). A similar magnetic field is also present
in the collisional PIC run, but lower in magnitude and slightly different in
shape, and somewhat obscured by noise, see Fig. 13a. This difference be-
tween the two simulation approaches can be explained by differences in the
profile of the plasma electrical resistivity which is involved in relating the
fast current generated in the laser interaction with the electric field in the
PIC-hybrid region through Ohm’s law. The plasma resistivity is related to
the plasma temperature via n oc T73/2, which explains how stronger heating
in the density gradient between 90 — 3607, in the PIC simulation allows
less magnetic field formation (7% is slightly larger which makes the resistivity
smaller; and E from Ohm’s law is smaller in consequence, which then makes
B smaller as a result of Faraday’s law). Laser-induced heating of the density
gradient eventually slows the magnetic field growth even in the PIC-hybrid
simulation. In any case, the magnitude of the magnetic fields and the narrow-
ness of the magnetic field layer suggest that the differences in the simulation
outcomes due to the effects of the magnetic field are negligible here.
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In the plasma at higher density than in the density-ramp region, the
electron density and the resistivity are relatively constant; and the curl of
the electric field more nearly cancels, which through Faraday’s law forces the
magnetic field to remain small. The smallness of the magnetic field in turn
forces the curl of the magnetic field and the total current to be small given
that the displacement current is also small. However, in the density-ramp
region, the gradients of the electron density and the resistivity due to the
temperature gradient allow the curl of E = nJ° to be finite, which allows a
small magnetic field to be generated.

In Figs. 14e and 14f we note that the total J, current in the reduced
resolution PIC-hybrid simulation is not as close to zero in the high-density
region as in Figs. 14a-14d that show the total current in the full PIC and
PIC-hybrid simulations at full resolution. By doing additional simulations
we have determined that the value of .J, in the high-density region in the low-
resolution simulation is reduced if the rise time of the laser (artificially short
in the simulation) is better resolved by the time step, which then improves
the statistics in the lag average of the axial current used in correcting the
background electron density in the high-density physics model.

The two PIC-hybrid simulations at the two resolutions agree with one an-
other relatively well. The full PIC and PIC-hybrid PSC two-dimensional sim-
ulations at full resolution required approximately 30,000 CPU hours, while
the PIC-hybrid simulation at reduced resolution required less than an hour
on 64 processors, which gave > 500x reduction in the computational cost.

We have begun to apply the new framework introduced here to the study
of diverse physics applications addressing the physics of fast ignition, which
will be reported elsewhere. We believe that the noise reduction in the PIC-
hybrid simulations is an advantage over the full PIC simulations. However,
more research is needed on what is the physically correct thermal noise level
and how to simulate it in a particle or hybrid code for conditions in which
neAd is less than unity at high-densities for a given electron temperature.
We acknowledge that there is more work to be done in understanding the
fidelity of both the full PIC and PIC-hybrid simulations, in controlling the
particle noise in the full-PIC simulation domains, in comparing the full PIC
and PIC-hybrid simulations, and in optimizing the PIC-hybrid framework.
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5. Summary and Conclusions

We have introduced a new framework for simulating the physics of short-
pulse laser-plasma interactions of intense pulses at spatial and temporal
scales relevant to experiments, using a new approach that combines a multi-
dimensional collisional electromagnetic PIC code with a reduced model of
high-density plasma based on Ohm'’s law. In the latter, collisions damp out
plasma waves so that electron inertia in the background electrons and the
displacement current are unimportant; and an Ohm’s law with electron in-
ertia effects neglected determines the electric field. In addition to yielding
orders of magnitude in speed-up while avoiding numerical instabilities, this
allows us to model many aspects of fast-ignition laser plasma interactions
and fast-electron transport in a single unified framework: the laser-plasma
interaction at sub-critical densities, energy deposition at relativistic critical
densities, and fast-electron transport at high densities. We hope to address
key questions such as the multi-picosecond temporal evolution of the laser-
energy conversion into hot electrons, the impact of return currents on the
laser-plasma interaction, the effects of resistive heating in the plasma, and
the effects of self-generated electric and magnetic fields on electron transport
with the framework introduced here.

We have reported 1D and 2D applications that illustrate the algorithm
and its ability to simulate fast-igntion physics. We compare simulations
using full PIC to those using the two-region PIC-hybrid framework. The use
of the two-region algorithm relaxes the requirements on spatial and temporal
resolution over conventional PIC simulation using finite-difference methods
and explicit time integration of the complete set of Maxwell’s equations. By
allowing the use of a coarser spatial mesh, the total number of particles
can be reduced, which leads to a significant computational savings. The
improvements in run time for the same physical simulation increase with the
number of spatial dimensions: we achieve a reduction in computer run time
that is > 40x in our reduced-resolution 1D PIC-hybrid simulation example
and > 500x shorter in our 2D PIC-hybrid simulation example as compared
to the full PIC simulations at higher resolution for the same problem.

In the model equations and the simulations presented here, we have frozen
the location of the boundary between the low and high-density plasma do-
mains. However, making the location of this boundary static is not required;
and we are undertaking simulations in which the boundary moves to higher
density if the background plasma heats, i.e., the location of the boundary
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becomes adaptive. In general, the boundary location should evolve and mi-
grate to either higher or lower density if the plasma heats or cools, respec-
tively. What matters in determining the location of the boundary is that the
high-density plasma is defined by the electron collision frequency being a sig-
nificant fraction of the electron plasma frequency. Moreover, the boundary
is not required to be a line in two dimensions or a plane in three dimensions.

Although our two-region algorithm significantly relaxes constraints on
time step, grid size, and particle number, there are residual requirements on
spatial and temporal resolution. An important question is how accurate a
representation is needed for the collision effects in the high-density, resistive,
background plasma, because the computational burden of calculating the
collisions in a particle simulation is significant. We will give this issue more
attention in future work. There are other physics and numerical consider-
ations that affect the new framework introduced here: these are not fully
settled and also will receive more attention in future work.

We acknowledge valuable input and encouragement from D. Larson, M. Tabak,
R. Town, M. Key, P. Patel, D. Strozzi, A. Friedman, and R. Cohen. We also
appreciate useful discussions with W. Mori and J. Tonge. This work was per-
formed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under Contract DE-AC52-07TNA27344.
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Figure 1: Schematic of plasma density gradient showing the low and high-density regions
in which different field equations are used. (color online)
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Figure 2: One-dimensional PSC conventional PIC simulation of laser absorption in a
plasma density gradient.(a) Plasma density gradient.(b) Electron temperature at 93.348
fs vs. z with initial background temperature 100eV.(c) Longitudinal electric field E, vs.
z at 93.348 fs shown in black with 7.2 shown in red. (color online).
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Figure 3: Integration of model difference equations for ion accoustic waves with kcsAt =
0.1 showing the fluid velocity vs. time in units such that a wave period equals 27, electric
field vs. time (80 periods), and the electric field and kinetic energy integrals over the

volume vs. time (80 periods). (a) &1 =€ =0, v =0, and Ny =o00.(b) 1 =€ =0, v =0,

and Ny =75. (¢) e1 = €2 =0.02, v =0, and Ny = co. (color online).
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Figure 4: Integration of model difference equations for electron plasma waves with wpe At =
0.1 showing the fluid velocity vs. time in units such that a wave period equals 27, electric
field vs. time (160 periods), and the electric field and kinetic energy integrals over the

volume vs. time (160 periods). (a) e =0, v = 0.(b) e2 = 0.02, v = 0 (color online).
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Figure 5: One-dimensional PSC conventional PIC simulation of laser absorption in a
plasma density gradient for e5 = 0,0.02,0.08.(a) Electron phase space, momentum p, /m.c
vs. z at 287 fs .(b) Corresponding electric field vs. z at 307 fs. (color online).
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Figure 6: One-dimensional integration of model equations for laser propagation in a plasma
density gradient with digital spatial smoothing around the transition from low to high-
density regions at z = 37.5 over 20Ax on either side of the interface with units such that
e/m. = ¢ = wy = 1.(a) Plasma frequency w,. and electron-ion collision frequency v; vs.
z.(b) Longitudinal electric field E, vs. z at t = 125. (¢) Magnetic field B, vs. z at t = 125.

@) electric field along axis at 93,3468fs (b) electric field along axis at 93.362fs
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Figure 7: One-dimensional simulations of laser absorption in a plasma density gradient.(a)
Electric field E, vs. z at 93 fs in PSC conventional PIC and two-region extended PSC
simulations with 100cpm and 100 particles per cell.(b) Electric field E, vs. z at 93 fs in
two-region extended PSC simulations with 20 cpm and 100 cpm. (color online). J? is the
current carried by the background electrons and ions.
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Figure 8: One-dimensional simulations of laser absorption in a plasma density gradient
showing the electric field E,/Ey, and electron temperature 7, and electron density n., in
arbitrary units at 93 fs with 100cpm and 100 particles per cell: (a) conventional PSC PIC
simulation; (b) two-region extended PSC simulation; and (¢) two-region extended PSC
simulation with electron current correction. (color online).
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Figure 9: One-dimensional simulations of laser absorption in a plasma density gradient
showing the fast electron current J; and the total current .J,, in units of Jy = en.c at
93 fs with 100cpm and 100 particles per cell: (a) conventional PSC PIC simulation; (b)
two-region extended PSC simulation; and (c¢) two-region extended PSC simulation with
electron current correction. (color online).
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Figure 11: Two-dimensional PSC simulations extending the 1D simulations shown in Figs.
2, 7-9 to 2D: full PIC, two-region PIC-hybrid at full resolution (100 cpm), and two-region
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Figure 14: Two-dimensional PSC simulations extending the 1D simulations shown in Figs.
2, 7-9 to 2D: full PIC, two-region PIC-hybrid at full resolution (100 cpm), and two-region
PIC-hybrid at reduced resolution (20 cpm) showing 2D contours and line-outs of the total
current J, vs. z in the midplane at 90fs. Jy = en.c. (color online)
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Figure 15: Two-dimensional PSC simulations extending the 1D simulations shown in Figs.
2, 7-9 to 2D: full PIC, two-region PIC-hybrid at full resolution (100 cpm), and two-region
PIC-hybrid at reduced resolution (20 cpm) showing 2D contours and line-outs of the fast
electron current J/ vs. z in the midplane ag§0fs. Jo = encc. (color online).



